36,947 research outputs found

    Distinguishing between Neutrinos and time-varying Dark Energy through Cosmic Time

    Get PDF
    We study the correlations between parameters characterizing neutrino physics and the evolution of dark energy. Using a fluid approach, we show that time-varying dark energy models exhibit degeneracies with the cosmic neutrino background over extended periods of the cosmic history, leading to a degraded estimation of the total mass and number of species of neutrinos. We investigate how to break degeneracies and combine multiple probes across cosmic time to anchor the behaviour of the two components. We use Planck CMB data and BAO measurements from the BOSS, SDSS and 6dF surveys to present current limits on the model parameters, and then forecast the future reach from the CMB Stage-4 and DESI experiments. We show that a multi-probe analysis of current data provides only marginal improvement on the determination of the individual parameters and no reduction of the correlations. Future observations will better distinguish the neutrino mass and preserve the current sensitivity to the number of species even in case of a time-varying dark energy component.Comment: 10 pages, 7 figures, minor updates to match the version accepted by Phys. Rev.

    Towards active microfluidics: Interface turbulence in thin liquid films with floating molecular machines

    Get PDF
    Thin liquid films with floating active protein machines are considered. Cyclic mechanical motions within the machines, representing microscopic swimmers, lead to molecular propulsion forces applied to the air-liquid interface. We show that, when the rate of energy supply to the machines exceeds a threshold, the flat interface becomes linearly unstable. As the result of this instability, the regime of interface turbulence, characterized by irregular traveling waves and propagating machine clusters, is established. Numerical investigations of this nonlinear regime are performed. Conditions for the experimental observation of the instability are discussed.Comment: 9 pages, 8 figures, RevTeX, submitted to Physical Review

    Time relaxation of interacting single--molecule magnets

    Full text link
    We study the relaxation of interacting single--molecule magnets (SMMs) in both spatially ordered and disordered systems. The tunneling window is assumed to be, as in Fe8, much narrower than the dipolar field spread. We show that relaxation in disordered systems differs qualitatively from relaxation in fully occupied cubic and Fe_8 lattices. We also study how line shapes that develop in ''hole--digging'' experiments evolve with time t in these fully occupied lattices. We show (1) that the dipolar field h scales as t^p in these hole line shapes and show (2) how p varies with lattice structure. Line shapes are not, in general, Lorentzian. More specifically, in the lower portion of the hole, they behave as (h/t^p)^{(1/p)-1} if h is outside the tunnel window. This is in agreement with experiment and with our own Monte Carlo results.Comment: 21 LaTeX pages, 6 eps figures. Submitted to PRB on 15 June 2005. Accepted on 13 August 200
    • …
    corecore